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Abstract
Two-dimensional eigenfunctions and eigenvalues of massive spin-1 particles
in the presence of the Dirac oscillator have been found by using the Kemmer
equation. We derive a complete analytical solution of the system, describing in
detail the energy spectrum and associated eigensolutions by using the formalism
of the chiral creation–annihilation operators.

PACS numbers: 03.65.Pm, 03.65.Ge.

1. Introduction

In relativistic quantum mechanics, exact solutions of the wavefunction are very important for
understanding the physics that can be obtained by such solutions. The Dirac-like Kemmer
equation is not new and dates back to the 1930s (for historical details, see [1]). Historically,
the loss of interest in the Kemmer equation stems from the equivalence of the Kemmer
approach to the Klein–Gordon (KG) and Proca descriptions in on-shell situations, in addition
to the greater algebraic complexity of the Kemmer formulation. However, in the 1970s this
supposed equivalence began to be investigated in several situations involving the breaking
of symmetries and hadronic process, showing that in some cases Kemmer and KG theories
can give different results. Thus, one important question concerning the Kemmer equation is
whether there is equivalence or not between its spin-0 and -1 sectors and the theories based on
the second-order KG and Proca equations, respectively [2]. Moreover, the Kemmer equation
seems to be richer than the KG one with respect to the introduction of interactions. In this
context, alternative Kemmer-based models were proposed for the study of meson–nucleus
interactions, yielding a better adjustment to the experimental data when compared to the
KG-based theory [3]. In the same direction, approximation techniques formerly developed in
the context of nucleon–nucleus scattering were generalized, giving a good description of the
experimental data of meson–nucleus scattering [4]. The deuteron’s nucleus scattering was also
studied using the Kemmer equation, motivated by the fact that this theory suggests a spin-1
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structure by combining two spin- 1
2 [5]. In the same context, we can cite the works of Barrett

and Nedjadi [6] and Ait-Tahar et al [7] on the meson–nuclear interaction and the relativistic
model of α-nucleus elastic scattering where they have been treated by the formalism of the
Kemmer theory. In the last decade, we have noted a renewed interest in the Kemmer equation.
It has been studied in the context of QCD [8], covariant Hamiltonian [9], in the causal approach
[10, 11], in the context of five-dimensional Galilean invariance [12], in the scattering of K+

nucleus [13], in the presence of the Aharonov–Bohm potential [14, 15], in the Dirac oscillator
interaction [16], in the study of thermodynamics properties [17], in the presence of some shape
of interactions [18–29], etc. These examples, among others in the literature, in some cases
break the equivalence between the theories based on Kemmer and KG and Proca equations,
such as in [3] or in Riemann spacetimes [30].

The Dirac oscillator (DO) is one of the most important quantum systems, as it is one of
the very few that can be solved exactly. It was studied by Itô et al [32] for the first time. On
the other hand, Moshinsky and Szczepaniak [33] were the first who introduced an interesting
term in the Dirac equation. More specifically, they suggested substituting in the free Dirac
equation the momentum operator �p such as �p − imβω�r , with �r = (x, y, z) being the position
vector, m the mass of the particle and ω the frequency of the oscillator. They could obtain a
system in which the positive energy states have a spectrum similar to that of the non-relativistic
harmonic oscillator. It can be shown that the Dirac oscillator interaction is a physical system,
which can be interpreted as the interaction of the anomalous magnetic moment with a linear
electric field [34, 35]. The Dirac oscillator has aroused a lot of interest both because it
provides one of the few examples of the exact solvability of the Dirac equation and because
of its numerous physical applications. As a relativistic quantum mechanical problem, the DO
has been studied from many viewpoints, including covariance properties, complete energy
spectrum and corresponding wavefunctions, symmetry Lie algebra, shift operators, hidden
supersymmetry, conformal invariance properties as well as completeness of wavefunctions.
Relativistic many-body problems with Dirac oscillator interactions have been extensively
studied with special emphasis on the mass spectra of mesons (quark–antiquark systems) and
baryons (three-quark systems). The dynamics of wave packets in a Dirac oscillator has been
determined and a relation with the Jaynes–Cummings model established. (2 + 1) spacetime
has also been shown to be an interesting framework for discussing the DO in connection with
new phenomena (such as the quantum Hall effect and fractional statistics) in condensed matter
physics. The thermodynamic properties of the DO in (1+1) spacetime have been mentioned
to be relevant to studies on quark–gluon plasma models [36].

In this work, we want to derive a complete solution of the two-dimensional Kemmer
oscillator, using the formalism of the chiral creation and annihilation operators. We show that
the Kemmer equation can be solved exactly, and the energy spectrum and the corresponding
wavefunction have been obtained. This paper is organized as follows. In section 2, we
review the solutions of the two-dimensional Dirac oscillator. In section 3, the solutions of the
two-dimensional Kemmer oscillator by using the formalism of the chiral creation–annihilation
operators have been sought. Section 4 is devoted to the discussion of different results obtained.
Finally, section 5 presents the conclusion.

2. Eigensolutions of the two-dimensional Dirac oscillator

The free Dirac equation in (2+1) spacetime is

[c−→α · −→p + β̂mc2]ψ = Eψ, (1)

2
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where ψ is the two-component Dirac spinor, �α are known as the standard Dirac matrices which
can be expressed in terms of the Pauli matrices �σ , �p is the momentum operator and c stands
for the speed of light. When we introduce the Dirac oscillator interaction in the free Dirac
equation, equation (1) becomes

[c−→α · (−→p − imωβ�r) + β̂mc2]ψD = EψD. (2)

In the case of a two-dimensional problem, the Dirac matrices become 2 × 2 matrices, which
can be identified with the so-called Pauli matrices as follows:

α̂x = σ̂x =
(

0 1
1 0

)
, α̂y = σ̂y =

(
0 −i
i 0

)
, β̂ = σ̂z =

(
1 0
0 −1

)
. (3)

In this form, ψ can be described by a two-component spinor ψD = (ψ1 ψ2)
T , and

equation (2) transforms into

[cαx · (px − imωβx) + cαy · (py − imωβy) + β̂mc2]ψD = EψD. (4)

This equation was algebraically solved by introducing chiral creation and annihilation
operators [37–39]:

ar = 1√
2
(ax − iay), a†

r = 1√
2

(
a†

x + ia†
y

)
, (5)

al = 1√
2
(ax + iay), a

†
l = 1√

2

(
a†

x − ia†
y

)
, (6)

where ax, a
†
x, ay, a

†
y are the usual annihilation and creation operators of the harmonic oscillator

a
†
i = 1√

2

(
ri

� − i
�
h̄

pi

)
, i = (x, y), (7)

with � =
√

h̄
mω

representing the ground oscillator width. The orbital angular momentum may
be expressed as

Lz = h̄
(
a†

r ar − a
†
l al

)
, (8)

which leads to a physical interpretation of a
†
l and a

†
r : these operators create a left

or right quantum of angular momentum, respectively, and are hence known as circular
creation–annihilation operators. These operators allow an insightful derivation of the energy
spectrum [37]

E± = ±mc2
√

1 + 4ζnl, (9)

where the integer nl stands for the number of left-handed orbital quanta, and ζ = h̄ω
mc2

is an important parameter that specifies the importance of relativistic effects in the Dirac
oscillator. The corresponding total wavefunction for both positive and negative eigenstates
has the following form [37]:

|±Enl
〉 =

⎡
⎢⎢⎣

√
Enl

±mc2

2Enl

|nl〉

∓i

√
Enl

∓mc2

2Enl

|nl − 1〉

⎤
⎥⎥⎦ . (10)

In the non-relativistic limit, where ζ → 0, we obtain

E± = ±mc2(1 + 2ζnl). (11)

In this manner, we have exposed the two-dimensional Dirac oscillator describing the energy
spectrum and the eigenstates in terms of chiral quanta. As follows, we concentrate on the case
of massive spin-1 particles confined in the low-dimensional Dirac oscillator interaction and
governed by the Kemmer equation.

3
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3. Eigensolutions of the two-dimensional Kemmer oscillator

The free relativistic Kemmer equation is [40–42]

(βμpμ − Mc)ψK = 0, (12)

where M is the total mass of two identical spin- 1
2 particles. β matrices, called Kemmer

matrices, are 16 × 16 matrices and have three irreducible representations of dimensions 1, 5
and 10. They satisfy the following commutation relation:

βμβνβλ + βλβνβμ = gμνβλ + gλνβμ, (13)

with

βμ = γ μ ⊗ 1̂ + 1̂ ⊗ γ μ, (14)

obeying the commutation rules first introduced by Duffin [41]; 1̂ is a 4 × 4 identity matrix,
γ μ are the Dirac matrices and ⊗ indicates a direct product [43]. The stationary state ψK

of equation (12) is a four-component wavefunction of the Kemmer equation, which can be
written in the form

ψK = ψD ⊗ ψD = (ψ1 ψ2 ψ3 ψ4)
T , (15)

where ψD is the solution of the Dirac equation. In the presence of the Dirac oscillator potential,
the momentum operator �p, in the free Kemmer equation, could be substituted by �p − iMBω�r ,
where the operator B in the additional term is chosen as B = γ 0 ⊗ γ 0, with B2 = 1̂. In this
case, the Kemmer equation with a Dirac oscillator interaction is

[(γ 0 ⊗ I + I ⊗ γ 0)E − c(γ 0 ⊗ �α + �α ⊗ γ 0) · (�p − iMωB�r) − Mc2γ 0 ⊗ γ 0]ψK = 0. (16)

At this stage, three remarks, which seem important to us, can be made as follows [16].
First, the massive spin-1 particle, which we consider here, constitutes a two-particle system
of spin- 1

2 instead of a single spin-1 particle [18], and therefore the Kemmer equation is a
two-body Dirac-like equation. Second, the β-matrices in equation (14) are in their reducible
representation, and each of the three inequivalent representations of βμ is contained just once
in the particular βμ representation of equation (14). Third, the wavefunction ψK is assumed to
be a product of two Dirac wavefunctions ψD, and the operator B is chosen as a direct product
of two γ 0 operators, instead of η0 used in [18]. For these reasons, although we used the same
equation which described the spin-0 and spin-1 particles, the two formalisms do not give the
same results (see [16, 18]).

Now, in the case of a 2D Dirac oscillator, the standard Dirac γ matrices are replaced by
Pauli σ matrices, and consequently equation (16) becomes

[(γ 0 ⊗ I + I ⊗ γ 0)E − 	
 − �� − Mc2γ 0 ⊗ γ 0]ψK = 0, (17)

where

	
 ≡ c(γ 0 ⊗ σx + σx ⊗ γ 0) · (px − iMωBx), (18)

�� ≡ c(γ 0 ⊗ σy + σy ⊗ γ 0) · (py − iMωBy). (19)

Putting equation (15) into equation (17), we easily obtain four linear algebraic equations:

(2E − Mc2)ψ1 − c{(px + iMωx) − i(py + iMωy)}ψ2

− c{(px + iMωx) − i(py + iMωy)}ψ3 = 0, (20)

Mc2ψ2 − c{(px − iMωx) + i(py − iMωy)}ψ1

+ c{(px − iMωx) − i(py − iMωy)}ψ4 = 0, (21)

4
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Figure 1. Relativistic coupling scheme for different levels.

Mc2ψ3 − c{(px − iMωx) + i(py − iMωy)}ψ1

+ c{(px − iMωx) − i(py − iMωy)}ψ4 = 0, (22)

−(2E + Mc2)ψ4 + c{(px + iMωx) + i(py + iMωy)}ψ2

+ c{(px + iMωx) + i(py + iMωy)}ψ3 = 0. (23)

From these equations, we find

ψ2 = ψ3, (24)

ψ1 = 2c

2E − Mc2
{(px + iMωx) − i(py + iMωy)}ψ2, (25)

ψ4 = 2c

2E + Mc2
{(px + iMωx) + i(py + iMωy)}ψ2. (26)

Like in the case of a two-dimensional Dirac oscillator of particles of spin - 1
2

px = iMω�√
2

(
a†

x − ax

)
, x = �√

2

(
a†

x + ax

)
, (27)

(px + iMωx) − i(py + iMωy) = ga
†
l , (28)

(px + iMωx) + i(py + iMωy) = ga†
r . (29)

Equations (25) and (26) transform into

ψ1 = 2g

2E − Mc2
a
†
l ψ2, (30)

ψ4 = 2g

2E + Mc2
a†

rψ2, (31)

with g = 2iMc2√ζ being the coupling constant between the different spinor components,
and ζ is a parameter that controls the non-relativistic limit.

The relativistic coupling scheme is depicted in figure 1. From this figure, one can note
that the components ψ1 and ψ4 can be obtained from the component ψ2 via the chiral creation–
annihilation operators. By considering the two-body spinorial basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉},
both transitions between the different spinorial components and the fermionics spin-flip

5
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transitions are mediated through the creation or annihilation of chiral quanta [39]. Thus,
this situation represented in figure 1 is very similar to the well-known fundamental model that
describes the interaction of the two-level atom with the quantized mode of the electromagnetic
field. Thus, one can note that this figure shows a correspondence with the relativistic Jaynes–
Cumming (JC) model in quantum optics [45].

Now, from equation (27), we find

(px − iMωx) + i(py − iMωy) = −gal, (32)

(px − iMωx) − i(py − iMωy) = −gar . (33)

In this case, the above system of equations becomes⎡
⎢⎢⎢⎢⎣

2E − Mc2 −ga
†
l −ga

†
l 0

−gal Mc2 0 gar

−gal 0 Mc2 gar

0 ga
†
r ga

†
r −(2E + Mc2)

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ = 04×1. (34)

Here, three remarks are essential as follows.

• First, a particular combination of the chiral operators is demanded by the conservation of
the total angular momentum:

Jz = Lz + Sz, (35)

where we have introduced the z-component of the total spin and angular momentum
operators:

Lz = h̄
(
a†

r ar − a
†
l al

)
, Sz = σz ⊗ I2 + I1 ⊗ σz. (36)

• Second, we can remark that the form of equation (34) is similar to that of the relativistic
JC coupling in the quantum optical model. Equation (34) contains a couple of spin- 1

2
particles coupled to a pair of chiral modes, like in the case of a quantum optical model
involving a pair of two-level atoms coupled to two modes of an electromagnetic field
[39, 45, 46].

• Third, according to equation (34), it seems impossible to deduce directly the form of the
Hamiltonian in order to diagonalize it. Nonetheless, it is possible to find the complete
energy spectrum and the corresponding eigenstates.

Now, when we write the component ψ2 in terms of the left and right chiral quanta bases,
i.e ψ2 ≡ |nl, nr〉, with

|nl, nr〉 = 1√
nlnr

(
a
†
l

)nl
(
a†

r

)nr |0〉, [a, a†] = 1, (37)

we obtain [
Mc2 +

2cg2

2E − Mc2

(
1 + a

†
l al

) − 2cg2

2E + Mc2

(
1 + a†

r ar

)] |nl, nr〉 = 0. (38)

After a simple algebraic calculation, we get the following equation of eigenvalues:

E2 + 4Mc2ζ(nl − nr)E − 2(Mc2)2ζ(2 + nl + nr) −
(

M

2
c2

)2

= 0. (39)

6
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Figure 2. Relative energy spectrum E/Mc2 as a function of the chiral quanta numbers (nl , nr )

with ζ = 1.

(This figure is in colour only in the electronic version)

Finally, the eigensolutions of the 2D Kemmer oscillator are

E± = Mc2

{
2ζ (nl − nr) ±

√
4ζ 2 (nl − nr)

2 + 2ζ (2 + nl + nr) +
1

4

}
, (40)

(
ψnl,nr

)
K

=

⎡
⎢⎢⎢⎢⎣

2g

2E−Mc2

√
nl + 1|nl + 1, nr〉
|nl, nr〉
|nl, nr〉

2g

2E+Mc2

√
nl + 1|nl, nr + 1〉

⎤
⎥⎥⎥⎥⎦ . (41)

In the non-relativistic limit, where ζ → 0, equation (40) becomes

E± = Mc2
( ± 1

2 ± ζ + 2ζ [nl − nr ] ± 2ζ [nl + nr ]
)

(42)

or

E+ = Mc2
(

1
2 + ζ + 4ζnl

)
, (43)

E− = −Mc2
(

1
2 + ζ + 4ζnr

)
. (44)

4. Results and discussion

The formalism of chiral creation and annihilation operators applied in the case of the 2D
Kemmer oscillator gives an exact form of the energy of the spectrum for massive spin-
1 particles. In figure 2, we show the dependence of both positive and negative energies
with three parameters, ζ, nl and nr ; there is no interference in the figure and, consequently,
the well-known Zitterbewegung phenomena disappear. This effect is a term describing
the jittery movements of a particle due to interference between parts of its wave packet
belonging to positive and negative energy states [47]. In figure 3, we have plotted the energy
levels as a function of the coupling parameters ζ for four levels. We can see that when
the chiral numbers are equal, nl = nr , the energy levels are simple, well separated but

7
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8



J. Phys. A: Math. Theor. 42 (2009) 235301 A Boumali

Figure 4. The diagram of the energy of the 2D relativistic Kemmer oscillator for five levels.

not equally spaced, and the appropriate level is |↑↑〉 |nl + 1, nr〉 or |↓↓〉 |nl, nr + 1〉. But
when the chiral numbers are different, nl �= nr , all levels of energies are degenerated and
separated by an interval of 4ζ . These observations can be explained and argued like in the
case of a two-body system [39] as follows: both |↑↓〉 |nl, nr〉 |↑↓; nl, nr〉 and |↓↑〉 |nl, nr〉
are the same states and, consequently, we have two possible spin-flip channels of opposed
chirality. Namely, |↑↓〉 |nl〉 ↔ |↑↑〉 |nl + 1〉 ↔ |↓↑〉 |nl + 1〉 is a right-handed channel, whilst
|↑↓〉 |nr〉 ↔ |↓↓〉 |nr + 1〉 ↔ |↓↑〉 |nr〉. Both channels conserve the total angular momentum.
The different situations shown in figure 3 have been depicted as an energetic diagram for both
relativistic and non-relativistic regions according to the ζ parameter in figure 4; according
to this figure, the impair order shows a degeneracy of these levels in contrast to the case of
pair order which is simple and no degeneracies exist. In the non-relativistic region, all levels
become single.

Now, we discuss the results found here compared with those obtained in the literature
and, precisely, we concentrate on the study of the connection between the Kemmer oscillator
and the model of the relativistic two-body Dirac oscillator. Rozmej and Arvieu [48] showed
that the Dirac oscillator interaction is a relativistic version of the JC model, and proved that
when using the Foldy–Wouthuysen (FW) transformation, the Zitterbewegung phenomena

9
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disappears. Benitez et al [49] found that the exact solution in three dimensions has a
hidden supersymmetry responsible for the special degeneracies of its energy spectrum. The
connection between the two-body Dirac equation and the Kemmer equation has been the
object of the several studies that one can mention the works of Aydin [50]. In an interesting
paper by Kaelberman [51], the two-body Dirac equation was reduced to a one-body Kemmer
equation in the case of equal masses. In the presence of the Dirac oscillator interaction, Bednar
et al [52] studied the connection between the two-body Dirac and Kemmer equations in three
dimensions. They used the results obtained from the works of Nedjadi and Barrett [18],
based on the DKP equation, and the works of Moshinsky et al [53] using the two-body Dirac
formalism. They showed that all these approaches admit hidden parasupersymmetry and point
out the reducibility of the two-body Dirac oscillator. Recently, Bermudez and Martin-Delgado
[54] have studied the confinement of two fermions in the Dirac oscillator potential, in (1+2)
dimension, and have obtained a complete analytical solution. In order to compare our study
to that of [54], one notes the following. (i) The problem we treated here is a problem at two
dimensions in contrast to that in [52] which is a problem at three dimensions. Recently, the 2D
problems have become very important in physics in both theoretical and experimental aspects,
and as an example we can cite the graphen system which is a 2D crystal where the particles are
confined and obey the Dirac equation. (ii) To the best of our knowledge, it seems impossible
to deduce directly the form of the Hamiltonian in our case, and consequently the comparison
with the Hamiltonian model based on the two-body Dirac oscillator will not be direct. In spite
of all, one can make the following remarks.

• Both theories are reducible and do not mix S = 1 and S = 0 states.
• Both studies show a good correspondence with the well-known Jaynes–Cumming model

in quantum optics.
• The two-body Dirac oscillator and the Kemmer oscillator, in this particular case,

give a complete analytical solution; the difference sums up on the complexity of the
eigenvalues in [54] in relation to our energy spectrum. Perhaps the existence of a hidden
parasupersymmetry can be the reason for this disagreement.

Finally, as mentioned in section 1, the thermal properties of the DO in (1+1) spacetime
have been mentioned to be relevant to studies on quark–gluon plasma models. Unfortunately,
and in spite of the great number of papers that have been recently published concerning the
solutions and properties of the Kemmer equation, as far as we know, no one has reported on
its thermal properties with the exception of the (1+1) dimensions case [17]. Pacheco et al
[55] showed that the Dirac oscillator can be used for describing the confinement of quarks in
mesons and baryons. On the other hand, Nedjadi and Barrett [18] suggested that the DKP
oscillator could also be a good candidate to be used as the confinement potential in heavy
quark potential. Thus, according to these results, we can hope that the eigensolutions of the
2D Kemmer oscillator can be used to calculate the thermodynamics properties of the Kemmer
oscillator at (1+2) dimensions.

5. Conclusion

The Kemmer equation in the presence of the Dirac oscillator interaction is exactly solved. In
the relativistic case, we cannot see any interference between positive and negative energies,
and so the well-known Zitterbewegung phenomena disappear. From the scheme of the diagram
of energies, two cases are presented: the case where nl = nr gives simple, and no degenerate,
levels and the case where nl �= nr gives the degeneracies of these levels. Finally, we can
expect that the model of confinement of two fermions by the Dirac oscillator potential at two
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dimensions, based on the Kemmer equation, can be employed as a good tool to obtain the
well-known models of Jaynes–Cumming (JC) in quantum optics. As an extension of this
work, we intend to carry out studies on the thermal properties of the Kemmer oscillator in two
dimensions.
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